Neurophysiological correlates of nociceptive heterosynaptic long-term potentiation in humans.
نویسندگان
چکیده
Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response in pain perception can be induced in humans using high-frequency electrical stimulation (HFS). The aim of this study was to induce spinal heterosynaptic LTP using HFS and investigate its heterotopic effects on event-related potentials (ERPs) to repeated nonpainful cutaneous stimuli as a possible electrophysiological cortical correlate of sensitization. Twenty-two healthy subjects were randomly assigned to one of the two experimental conditions: HFS and control stimulation. Before and after the stimulation, both conditions received heterotopic mechanical (pinprick) and paired nonpainful electrical test stimuli to quantify and confirm the effects of HFS on the behavioral level. ERPs to paired nonpainful electrical stimulation were measured simultaneously. Conditioning HFS resulted in significant heterotopic effects after 30 min, including increased perceived intensity in response to (pinprick) mechanical and paired nonpainful electrical stimulation compared with control. The paired nonpainful electrical stimuli were accompanied by significantly enhanced responses regarding the ERP N1-P2 peak-to-peak and P300 amplitude compared with control. These findings suggest that HFS is capable of producing heterosynaptic spinal LTP that can be measured not only behaviorally but also using ERPs.
منابع مشابه
Neurophysiological Correlates of Nociceptive 1 Heterosynaptic Long - Term Potentiation in Humans
39 Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase 40 of synaptic strength. LTP is also present in the nociceptive system and is believed to be one 41 of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an 42 increased response in pain perception can be induced in humans using high frequency 43 electrical stimu...
متن کاملPerceptual correlates of nociceptive long-term potentiation and long-term depression in humans.
Long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength are ubiquitous mechanisms of synaptic plasticity, but their functional relevance in humans remains obscure. Here we report that a long-term increase in perceived pain to electrical test stimuli was induced by high-frequency electrical stimulation (HFS) (5 x 1 sec at 100 Hz) of peptidergic cutaneous afferents (27% a...
متن کاملEffects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system.
We recently reported perceptual correlates of long-term potentiation (LTP) of synaptic strength within the nociceptive system demonstrating the functional relevance of LTP for human pain sensation. LTP is generally classified as NMDA-receptor dependent or independent. Here we show that low doses of the NMDA-receptor antagonist ketamine (0.25 mg/kg) prevented the long-term increase in perceived ...
متن کاملHeterosynaptic long-term potentiation at GABAergic synapses of spinal lamina I neurons.
Neurons in spinal dorsal horn lamina I play a pivotal role for nociception that critically depends on a proper balance between excitatory and inhibitory inputs. Any modification in synaptic strength may challenge this delicate balance. Long-term potentiation (LTP) at glutamatergic synapses between nociceptive C-fibers and lamina I neurons is an intensively studied cellular model of pain amplifi...
متن کاملDistal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs.
Synapses onto distal dendritic tufts are believed to function by modulating time-locked proximal inputs; however, the role of these synapses when proximal inputs are asynchronous or silent is unknown. Surprisingly, we found that activation of apical tuft synapses alone resulted in heterosynaptic potentiation of proximal synapses. In mouse adult hippocampal CA1 pyramidal neurons, we show that ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2010